
EXAFS Analysis Organization and Data Flow
Matthew Marcus

May 2, 2002

 This writeup shows how the EXAFS and other data analysis programs are
organized and the sequences in which they can be used. There are five main groups of
programs, MCA, XRF, EXAFS front-end, EXAFS Fourier and general-purpose 2-column
data manipulation. Two-column files are used for data which is expressed as a quantity
plotted against some other quantity and consist of two columns of ASCII numbers with
no header. Such files are generated by most of the programs.

 The functions of the five groups are:
MCA: Reads and manipulates MCA data from the detector

XRF: XRF elemental mapping and the analysis thereof

EXAFS front-end:
 EXAFS data from raw scans up through unfiltered ‘wiggly-part’ data.

EXAFS Fourier:
 Fourier transformation and handling of resulting files including non-linear least-
 squares fitting.

General purpose e-column data manipulation:
 Editing of XY data, plotting, weighted sums or products

Files are kept track of through the mechanism of file extensions. A list is given at
the end of this note. Most programs are set up so that their file-selection dialogs default
to an extension appropriate to the type of file. Thus, the k-space&background-remove
program produces a .b file by default, and the FT program takes .b’s as input.

 The first set of programs I’ll consider is the MCA set. This consists of the MCA
utility on the data-taking machine and the MCA reader on the analysis computer. The
MCA reader lets you see the spectrum from one or a sum of detectors and puts out a 2-
column file for the spectrum. This simple dataflow is shown in Figure 1.

Data Flows: MCA Programs

MCA
Utility

MCA Spectrum
()mca

MCA
Reader

Graph of MCA spectrum
2-column cts vs E file
Header info
of counts in each bin

Figure 1. Dataflow for the MCA programs. The various types of objects shown are as
follows and are the same for subsequent Figures:
Rectangular box: Program
Dashed line: Separates data-taking from data analysis programs
Rounded box: Results. Within this box, we have:
 Text Results or files
 Italic text Most important files or results
 (ext) File extensions

 The dataflow for the XRF programs (Figure 2) is not quite so simple. The
fluorescence-mapping program on the data-taking machine produces a file which
contains the maps for all SCA’s. It’s essentially a three-dimensional array (SCA, x,y)
with a header. This can be looked at with the display program. The display program is
the main means of interacting with these files. However, you can also do difference
maps with another program. These maps have the same format as the normal map files,
so they can go into the XY display program. Further, there is some processing, such as
making cross-correlation maps, which can be done with the display program. The results
of such processing again look enough like raw data to be readable by the same program,
which is why the Figure shows a loop. The end results will be images of maps in single
elements, tricolor maps in three elements, scatterplots or correlation images.

Data Flows: XRF Programs

XY
Mapping

Fluorescence
map ()xrf

XY
Display

Difference
Map

1-SCA images

tricolor map
1-SCA map ()

 ()
correlation ()
scatterplot image ()
correlation image ()

xrf
bmp,jpg
cor

bmp,jpg
bmp,jpg

Difference
map ()xrf

> edge
< edge

Figure 2. Dataflow for the XRF program. Note that the Difference Map program takes
two .xrf files as input. The dashed line coming from the .cor correlation file is meant
to indicate that this is a minor path. Not shown: Ratio map, which works just like
Difference map.

 Next, we have the front end of the EXAFS process, as shown in Figure 3. This is
considerably more complex. There are two main types of files, full-information (dat)
and 2-column. The full-information files have all the information from the beamline,
including counts and count times for all counters. This information is needed for
operations such as summing and deadtime correction, but is removed when going to the
next stage of analysis. Thus, if the spectrum was acquired in transmission mode, the full-
information file will have both the I0 and It counters, but the rest of the data-analysis
programs require only ln(I0/It). Thus, the principal output of the EXAFS Data Editor is
a two-column file with the energy and ln(I0/It) as the columns. These two-column files
are denoted by a .r extension.

 The raw signal file then has to be converted to an EXAFS (k vs. knχ(k)) 2-column
file. This involves subtracting the pre-edge, choosing an E0 value, running a spline
through the post-edge, and subtracting and dividing by that spline. All these steps are
done using the k-space&background removal program. The resulting files have a .b
extension. This program can also be used to produce files (.t) suitable for XANES
analysis.

Data Flows: EXAFS Front End

EXAFS
Data Acq.

EXAFS Scan
()dat

EXAFS
Editor

Deglitching, Previewing
Deadtime correction
Summing
Processed scans ()dat

r2-column signal vs. E file ()

k-space &
bknd remove

XANES:
Normalized
E-space ()t

EXAFS:
k (k) ()nχ b

Linear
Fit

PCA

Fitted fractions

Edge energy

Fitted data ()fit
Fit residuals ()res

Number of components
What models are relevant

Abstract components ()

Target-transformed models ()

cmp

trg

Figure 3. Dataflow for the first part of EXAFS/XANES analysis. This Figure covers
steps up to but not including Fourier manipulations.

 The .b and .t files can be used for ‘fingerprint’ or ‘physics-free’ analysis by linear
fitting or PCA. All fitting programs, including PCA, produce best-fit (fit) and
residuals (res) files. In addition, the PCA program produces files for the abstract
components (cmp) and any target-transformed models which the user may have tested
(trg). All these files are two-column, with E or k as the abscissa.

Analysis can also proceed along the Fourier track (Figure 4) in which one or more
shells are extracted by Fourier filtering then fitted to amplitudes and phases derived from
previously-extracted shells. The FT program can save out filter-function files so they can
be re-used, thus assuring consistent filtering between different samples or between
samples and models. Also, FT can save the filter residual, which is the input signal
minus the filtered: 2b = b-f. This residual can be put back into the FT and re-filtered to
see higher shells. The Multishell fit program uses filtered or unfiltered data (usually
filtered) and model amplitude and phase files, and produces the coordination numbers,
distances, etc. These parameters can be saved into a file (fpr), which looks like a
configuration file, and can be read back into the fit program. This program also produces
the usual fit and res files.

Data Flows: EXAFS Fourier
EXAFS signal
()b

FT

FT magnitude
Real&Imaginary part of transform

Filtered shell
Amp and phase

 ()
 ()

FIlter function ()
 ()

 ()
Filter residual ()

m
x,y

flt
f

a,p
2b

Multishell
(non-linear
least-squares)
fit

Model amps&
phases ()a,p

Fit parameters ()
Best fit and residuals ()

fpr
fit, res

Figure 4. Dataflow for Fourier (shell) analysis. The FT program can re-use the filter
residuals (2b) as input and the filter functions (flt) for filtering another file. The fitting
program uses amplitudes and phases which usually come from EXAFS (b) files other
than the one being analyzed.

 The final group of programs consists of those which deal with two-column files in
a general, non-specialized way. Presently, this group consists of the plot-add-multiply

and 2-column editor programs. There is no Figure for these because there is no set path
by which they are used.

The plot-add-multiply program has two main functions. One of these is to plot a
set of files on a common scale. This is useful for comparing files, plotting the real and
imaginary parts of the FT along with the magnitude, etc. The full set of graph controls is
available and the graph can be saved as a bitmap. The second function is that it does
weighted sums or products. Each file is viewed as a tabulation of a function y=y(x), and
the program lets you make Y=Σwiyi(x) or Y=Πyi(x)pi, interpolating and pruning as
necessary to put all the values on a common grid. This is handy for tasks such as
adjusting phase shifts for semi-empirical modeling and making linear combinations of
models to simulate spectra.

The 2-column editor works on one file at a time, but has more functions than
plot-add-multiply. It lets you cut a piece out of the middle or cut off the ends of a set of
data, resample by interpolation, sort, and do arithmetic on the ordinate or abscissa. The
arithmetic operations supported are: add a constant, multiply by a constant, take the log,
take the exponential, get the coordinates of a cursor, and use cursor coordinates in any of
the above operations. The program also has functions for integration, differentiation and
removal of a straight-line background.

Now I will describe some examples of how these programs can be used together
for data analysis tasks. First, consider a signal-vs-E spectrum with a strongly curved
post-edge background, and suppose you want to normalize it for XANES applications. A
quick-and-dirty solution can often be done with 2-column editor. First, subtract off the
pre-edge background. Then, take the log of the data. Fit a linear background through the
part of the post-edge past the XANES region. Now remove that background and take the
exponential. This set of steps is equivalent to dividing by an exponential curve. The fit
to the curved post-edge is usually good enough for XANES work.

For a next example, suppose you need a model for a Cu central atom surrounded
by Ti scatterers (Cu->Ti) in a metallic environment. There’s no suitable intermetallic in
this system. You might think to use FEFF to get ab-initio values, but that doesn’t take
into account the various distortions and artifacts of data reduction. A better way is to run
FEFF twice, once for Cu in Cu metal (Cu->Cu) and once with a hypothetical structure
consisting of Cu surrounded by Ti. You can generate the FEFF input file for this by
starting with a file made by ATOMS for Ti metal and editing it to change the central
atom to Cu. Now, create the phase and amplitude files for these two theoretical models,
in the first shell. Call them cucuth.[ap] and cutith.[ap], where the [ap]
means either a or p. Also, get phase and amplitude files for Cu foil (cufoil.[ap]). Now
do the following manipulations with plot-add-multiply:

cuti_semi.a = cufoil.a*(cutith.a/cucuth.a)
cuti_semi.p = cufoil.p+cutith.p-cucuth.p

The product and ratio can be done as a weighted product with powers of 1,1 and –1.
The resulting files will be appropriate for Cu looking at Ti. at the distance and
coordination number specified when generating cutith.[ap]. The E0 will be
approximately correct and all Fourier and spline-fit artifacts will be taken into account.
These files are ready to be used in Multishell fit. Of course, this method must be used
with eyes open, since it assumes things about transferability. For instance, you wouldn’t

use it to go from Cu->O in copper acetate to Fe->Mo in an intermetallic because the
chemistry of the site is very different and the atomic numbers far apart.
 The Stern ratio method for evaluating Debye-Waller effects is another example.
In this method, you plot the ratio of two amplitudes vs. k2 on semilog axes. How do you
get the abscissa to be the square? First, use plot-add-multiply to take the ratio (A1

1*A2
-1).

Next, take this ratio file into 2-column editor and do the following sequence: x->ln(x),x-
>2x,x->exp(x). This turns x into x2. Now, bring it back into plot-add-multiply and plot
semilog or do y->ln(y) in plot-add-multiply and plot on a linear scale. I don’t have a
linear fit routine which returns the fit parameters, but you can use any data-graphing
program for that, even Excel.
 As a final example, consider the case of a sample with a weak second shell. This
is common in natural materials in which the disorder is significant. When you take the
FT, you often find a big first shell, and some hint of a second shell, but it’s not really
well-resolved from the first shell. One way to deal with this is as follows:

1. Use FT to get the first shell and save the filter residuals. This contains the

second-shell information.

2. Look at the filter residual file with 2-column editor. You will probably find that
 the recognizable signal extends up to a lower k than the first-shell signal does.
 Chop the file so that the noisiest parts are gone.

2. Put this back into FT and see if there’s a recognizable second shell peeping out.

Alternatively, if you have a model for the first shell, use Multishell fit to fit the first shell,
then use plot-add-multiply to subtract the fitted first shell from the unfiltered data.
Proceed as in steps 2 and 3 above. This procedure makes sure that you’re only
subtracting off something that really belongs to the first shell. This method can be used
iteratively to split poorly-resolved shells such as the first and second of Fe metal.

 To wrap up, I’ll go through a highly-condensed example of what a typical set of
data acquisition and analysis might be like. Consider a soil sample which contains a
metal, say Zn, in some unknown form or set of forms. You want to know how many
different forms there might be and what they might be. First, use the MCA Utility to get
an idea of what elements are present. Drive around the sample a bit. If you find an
interesting spectrum, save it out so it can be read later. Next, map the sample using XY
Mapping. You will probably find interesting patterns of correlation, for instance that Zn
is found where Mn or Fe are. Use this map to pick out spots for EXAFS. Tiny hotspots
may be small grains of minerals which represent only a small fraction of the whole, so
you may want to avoid being tempted into looking only at the strongest spots.
 Now, take EXAFS data on each of several spots. The scans will be named things
like spot1001.dat, spot1002.dat... and so forth. Use the EXAFS Data Editor
to clean up the files, discard the bad ones, do deadtime correction, and add up the good
ones. Do the deadtime correction before adding up. Now, you have summed scans for
each spot, spot1.dat, spot2.dat...etc. Apply k-space&background remove to
put it into k-space according to your favorite prescription for E0 selection and background
removal. Do it consistently. Consistency of methods is key in EXAFS analysis,

especially if you’re doing PCA. You can now compare visually with references or use
PCA on spot1.b, spot2.b, etc. to see how many independent components there
might be. Use the target transformation to test references for plausibility. Alternatively,
you can use the linear least-squares program to do fits and see what species are
plausible. If you find a species that doesn’t match your database, then you can dig deeper
using Fourier methods and your deep knowledge of Zn minerology (sorry, software can’t
do everything!) to figure out what’s there.

 One last hint: Make up a readme.txt file as you go during analysis so you can
remember what you did, what you did it to, and why you did it. It’s a lifesaver when you
go back months or years later.

 Finally, here’s a list of file extensions:
mca MCA spectrum
xrf XRF element map
cor Cross-correlation map from XRF
bmp,jpg Bitmaps from programs which produce graphics
dat Raw, multicolumn EXAFS
fpr Fit parameters from Multishell fit
------- Files past this point are all 2-column and may be input to any 2-column program---
r 2-column signal-vs. E EXAFS (raw, not background subtracted)
t Background-subtracted, E0-shifted E-space
b EXAFS (knχ(k) vs. k)
fit Fitted function from any fit program
res Residual from any fit program, (input)-.fit
cmp PCA abstract component
trg PCA target transformed reference
m FT magnitude
x FT real part
y FT imaginary part: m = sqrt(x2+y2)
flt Filter function (R abscissa)
f Filtered, back-transform: f = FT-1{flt(r)*(x(r)+iy(r)}
a Back-transform amplitude
p Back-transform phase: f(k) = a(k) sin(p(k))
2b Filter residual: 2b = b-f

	May 2, 2002
	Rectangular box:Program

